Слои атмосферы

Воздушные массы и их влияние на погоду

Изменчивость наибольшим образом связана с движением воздушных масс, которые в свою очередь отвечают за формирование температуры воздуха. Различают следующие типы воздушных масс:

  • Длительное время находящиеся над океаном. Такой воздух впитывает в себя влагу, которая в дальнейшем выливается на землю в виде осадков. Влага впитывается воздухом в виде испарений от океанической воды.
  • Сухой воздух формируется массами, которые длительное время находились над сушей. Здесь практически нет испарений, а значит, влажность снижена.
  • На полюсах формируется холодный и сухой воздух. Связано это с тем, что например, Ледовитый океан полностью покрыт льдом, там низкая температура, а значит и температура воздуха низкая. Кроме того испарения здесь минимальные, и этим обуславливается сухость.
  • Южный ветер для северного полушария берёт своё начало в экваториальных или тропических широтах Южного полушария, а значит, несет с собой теплый воздух.

Схематическое движение воздушных масс для нашего региона может быть показано так.

Эта схема отлично показывает, что даже простейшее наблюдение за изменениями направления движения воздушных масс можно давать прогнозы по изменению погоды. Например, если дует северный ветер, то он обычно несет холодную и ясную погоду. Если дует Западный ветер, то он обычно несёт дожди, поскольку берёт начало воздушных масс в Атлантическом океане. Если мы говорим о Южном ветре, то он несет для нашей страны тепло вне зависимости от времени года. Восточной ветер для континентальной Европы несёт зимой холод, а летом тепло.

Говоря про изменчивость погоды нужно отметить, что не во всех регионах нашей планеты изменчивость является определяющим элементом погоды. Например, особенно четко это прослеживается на экваторе, где практически круглый год жарко и высокая влажность. Также в качестве примерно устойчивой погоды можно привезти Антарктиду, где всегда холодно. Поэтому в географии используются следующие схема для определения районов, где воздушные массы несут изменчивость погоды, а где её устойчивость.

Загрязнение атмосферы: парниковый эффект и кислотные дожди

К сожалению, постоянное загрязнение воздуха, которое связано преимущественно с развитой промышленностью, приводит к массе ухудшений. К таким опасным изменениям относят так называемый парниковый эффект. Дело в том, что земные тела излучают волны преимущественно инфракрасного спектра — они далеко не всегда могут проникать сквозь атмосферу. Повышение концентрации парниковых газов, которые поглощают инфракрасные излучения (водяной пар, углекислый газ), приводит к повышению общей температуры в нижних слоях атмосферы, что, соответственно, влияет на климат.

Кислотные дожди — еще один результат промышленного загрязнения воздушной оболочки Земли. Оксиды серы и азота, которые выбрасываются в воздух тепловыми электростанциями, автомобилями, металлургическими заводами и некоторыми другими предприятиями, могут вступать в реакцию с водяным паром атмосферы — под воздействием солнечного излучения здесь образуются кислоты, которые выпадают вместе с другими осадками.

На какие слои делится атмосфера?

Хотя они и имеют сильно отличающиеся друг от друга температуры, очень сложно сказать, на какой конкретной высоте начинается один слой и заканчивается другой. Это деление весьма условное и носит приблизительный характер. Однако слои атмосферы все же существуют и выполняют свои функции.

Самая нижняя часть воздушной оболочки названа тропосферой. Ее толщина увеличивается при перемещении от полюсов к экватору с 8 до18 км. Это самая теплая часть атмосферы, поскольку воздух в ней нагревается от земной поверхности. Большая часть водяного пара сосредоточена в тропосфере, поэтому в ней образуются тучи, выпадают осадки, гремят грозы и дуют ветра.

Следующий слой имеет толщину около 40 км и называется стратосферой. Если наблюдатель переместится в эту часть воздуха, то обнаружит, что небо стало фиолетовым. Это объясняется малой плотностью вещества, которое практически не рассеивает солнечные лучи. Именно в этом слое летают реактивные самолеты. Для них там открыты все просторы, поскольку практически нет облаков. Внутри стратосферы имеется слой, состоящий из большого количества озона.

После нее идут стратопауза и мезосфера. Последняя имеет толщину около 30 км. Она характеризуется резким понижением плотности воздуха и его температуры. Небо для наблюдателя видится в черном цвете. Здесь можно даже днем наблюдать звезды.

География

§ 13. Земная кора и литосфера — каменные оболочки Земли

Вспомните

Какие внутренние оболочки Земли выделяются? Какая из оболочек самая тонкая? Какая оболочка самая большая? Как образуются гранит и базальт? Каков их внешний вид?

Земная кора и ее устройство. Земная кора — самая верхняя каменная оболочка Земли. Она состоит из магматических, метаморфических и осадочных горных пород. На материках и под океанами она устроена по-разному. Поэтому различают континентальную земную кору и океаническую земную кору (рис. 42).

Они отличаются друг от друга по толщине и по строению. Континентальная кора более мощная — 35—40 км, под высокими горами — до 75 км. Она состоит из трех слоев. Верхний слой — осадочный. Он сложен осадочными породами. Второй и третий слои состоят из разнообразных магматических и метаморфических пород. Второй, средний слой, условно называют «гранитным», а третий, нижний — «базальтовым».

Рис. 42. Строение континентальной и океанической земной коры

Океаническая кора намного тоньше — от 0,5 до 12 км — и состоит из двух слоев. Верхний, осадочный слой, сложен осадками, покрывающими дно современных морей и океанов. Нижний слой состоит из застывших базальтовых лав и называется базальтовым.

Континентальная и океаническая кора на поверхности Земли образуют гигантские ступени разной высоты. Более высокие ступени — это материки, поднимающиеся выше уровня моря, более низкие — дно Мирового океана.

Литосфера. Как вы уже знаете, под земной корой располагается мантия. Слагающие ее породы отличаются от горных пород земной коры: они более плотные, тяжелые. Земная кора прочно скреплена с верхней мантией, образуя с ней единое целое — литосферу (от греч. «литое» — камень) (рис. 43).

Рис. 43. Соотношение литосферы и земной коры

Рассмотрите соотношение между земной корой и литосферой. Сравните их толщину.

Вспомните, почему в мантии есть слой пластичного вещества. Определите по рисунку глубину, на которой он залегает.

Найдите на рисунке границы раздвижения и границы столкновения литосферных плит.

Литосфера — твердая оболочка Земли, состоящая из земной коры и верхней части мантии.

Под литосферой находится разогретый пластичный слой мантии. Литосфера как бы плавает по нему. При этом она перемещается в разных направлениях: поднимается, опускается и скользит горизонтально. Вместе с литосферой перемещается и земная кора — внешняя часть литосферы.

Рис. 44. Основные литосферные плиты

Литосфера не монолитна. Она разбита разломами на отдельные блоки — литосферные плиты (рис. 44). Всего на Земле выделяют семь очень больших литосферных плит и несколько более мелких. Литосферные плиты по-разному взаимодействуют между собой. Перемещаясь по пластичному слою мантии, они в одних местах раздвигаются, в других — сталкиваются друг с другом.

Вопросы и задания

  1. Какие два вида земной коры вы знаете?
  2. Чем литосфера отличается от земной коры?
  3. На какой литосферной плите вы живете?

Сопротивление


Командный отсек «Mk1-2» с парашютом «Mk16-XL» тормозится путём сопротивления в атмосфере Кербина.

В игре сила атмосферного сопротивления (FD) моделируется следующим образом:

FD=0.5ρv2dA{\displaystyle F_{D}=0.5\,\rho \,v^{2}\,d\,A}

где ρ — плотность атмосферы (кг/м3), v — скорость корабля (м/с), d — безразмерный коэффициент сопротивления формы, и A — (м2).

Следует отметить, что площадь поперечного сечения на самом деле не рассчитывается в игре. Вместо этого предполагается, что она прямо пропорциональна массе. Такое упрощение, сделанное в KSP не соответствует реальности. Параметр FlightGlobals.DragMultiplier показывает, что соотношение пропорциональности равно 0,008 м2/кг, поэтому:

A=0.008⋅m{\displaystyle A=0.008\cdot m}

где m — масса корабля (кг).

Плотность атмосферы ρ прямо пропорционально атмосферному давлению p на данной высоте, являющему собой функцию высоты (a), атмосферного давления на поверхности (p), и характеристической высоты (H):

p=p⋅e−aHρ=1.2230948554874kgm3⋅atm⋅p{\displaystyle {\begin{aligned}p&=p_{0}\cdot e^{-{\frac {a}{H}}}\\\rho &=1.2230948554874{\frac {\text{kg}}{{\text{m}}^{3}\cdot {\text{atm}}}}\cdot p\end{aligned}}}

где p измеряется в атмосферах и ρ в кг/м3. Множитель 1.2230948554874 кг/(м3·атм.), данный в FlightGlobals.getAtmDensity(1.0), означает плотность воздуха при одной атмосфере (на уровне моря Кербина).

Коэффициент сопротивления (d) рассчитывается как усреднённый по массе коэффициент сопротивления всех деталей корабля. Для большинства аппаратов без открытых парашютов d очень близок к 0.2, так как это — коэффициент сопротивления подавляющего большинства деталей.

Например, коэффициент сопротивления корабля, собранного из командного отсека «Mk1-2» (масса 4, сопротивление 0.2) и парашюта «Mk16-XL» (масса 0.3, сопротивление 500), равен

4⋅0.2+0.3⋅5004+0.3=35.07{\displaystyle {\frac {4\cdot 0.2+0.3\cdot 500}{4+0.3}}=35.07}

Строение атмосферы

Воздушная оболочка не имеет чёткой границы. Воздух проникает в земную кору. Но нижней границей всё же считают земную поверхность. Условная верхняя граница атмосферы находится на высоте 1000 км. Выше этой отметки до Солнца располагается космическое пространство.

Рис. 1. Схема строения атмосферы.

Сфера неоднородна по составу. Выделяют слои атмосферы. Если разместить их по порядку от Земли, они будут выглядеть так:

  • тропосфера;
  • стратосфера;
  • верхние слои атмосферы.

В тропосфере содержится почти весь водяной пар и 80 % кислорода. Толщина слоя неодинакова на разных широтах. Над экватором слой простирается на 18 км от земной поверхности. В районе полюсов — на 10 км.

Содержание кислорода остаётся постоянным, несмотря на активное использование. Главными поставщиками кислорода являются растения. Они вырабатывают кислород в процессе фотосинтеза.

Рис. 2. Главные производители кислорода.

Тропосфера является самым плотным слоем. Здесь формируется погода.

Выше тропосферы расположена стратосфера. Она простирается до высоты 50–55 км. Здесь нет водяных паров. Кислорода очень мало, воздух разрежённый. Такая характеристика слоя говорит о том, что этим воздухом невозможно дышать.

В нижней части стратосферы расположен озоновый слой, состоящий из озона. Он очень важен для планеты, так как задерживает ультрафиолетовые лучи. В небольших количествах лучи полезны. Большое количество ультрафиолетовых лучей губительно для всего живого.

Современное развитие промышленности привело к тому, что озоновый слой стал уменьшаться. Появились озоновые дыры. Человечество принимает меры, чтобы не допустить разрушение озонового слоя.

Рис. 3. Потребители кислорода.

Выше стратосферы расположены высокие слои атмосферы. Здесь находятся «следы воздуха», то есть его практически нет. Этот слой постепенно переходит в космическое пространство.

Что мы узнали?

Атмосфера является очень важной оболочкой планеты. В оболочке выделяют 3 важных слоя: тропосферу, стратосферу и верхние слои атмосферы

Оболочка состоит из воздуха. Азот — основная составляющая часть атмосферного воздуха. Самым важным газом является кислород. Именно он является условием возникновения жизни на Земле.

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Нижний слой атмосферы – тропосфера

Первый слой – тропосфера, в котором одна из особенностей – понижение температуры, которое происходит каждые сто метров со скоростью 0, 65 и в самой верхней части равна -53. Происходит расслоение воздуха горизонтально. Воздушные массы отличаются по месту формирования. На границе воздушных масс появляются антициклоны и циклоны – это атмосферный фронт. Они определяют погоду в конкретный промежуток. Тропосфера больше всего изучена. Высота этого слоя от 8 до 12 км.В основном здесь сосредоточены водяные пары. В Тропосфере образовывается большое количество облаков. Водяные пары есть и в стратосфере и тропопаузе, однако, там их намного меньше, поэтому и отсутствует облакообразование.

Этот слой атмосферы является самым защищенным от лучей Солнца, населенным и подвижным.

80% от массы атмосферы занимает тропосфера.

Не так давно в этом слое атмосферы обнаружили, что температура падает при повышении высоты и решили, что это свойство можно приписать всем слоям атмосферы. Объяснили ученые этот факт так: чем дальше от поверхности Земли, нагретой солнцем, тем холоднее. Но зонды, которые поднимали в атмосферу, показали, что до десяти километров температура понижается, затем остается постоянной, затем постепенно воздушные массы нагреваются. Эти данные противоречили представлениям ученых об изменении в атмосфере температуры по вертикали. Решили проверить и запускали шары ночью, чтобы Солнце приборы не нагревало.

Но сведения были одинаковы: температура с высотой падать прекращает. Ученые признали факт, что выше установленной высоты свои законы, не похожие на законы нижней части атмосферы.

Там где температура становится ниже, называют тропосферой, а тот, в котором не понижается – стратосферой.

Аэрологические станции

Скорость и направление ветра, температуру, давление на высотах от тридцати метров до сорока километров (тропосфера и часть стратосферы) регистрируют с помощью системы АРЗ-РЛС (аэрологический зонд — радиолокационная станция).

Зонд — это специальный баллон (из резины или пластика, заполненный водородом или гелием (несколько реже, хотя менее опасно) для поднятия вверх и контейнер с датчиками температуры, давления. Сигналы датчиков преобразуются в радиосигнал, затем передаются на РЛС.

Радиолокационная станция принимает сигналы и расшифровывает их. РЛС «ведет» радиозонд, отслеживая его положение по вертикали и горизонтали.

Таким образом аэрологическая станция получает самые достоверные данные о температурах, давлении и о скорости и направлении ветра на различных высотах.

Так как изучают атмосферу с помощью зондов всего лишь от двух до четырех раз в сутки, этого совершенно недостаточно для сиюминутного знания о состоянии воздушных масс (перемещение, облачность).

Для нужд ветровых станций и аэродромов в последнее время разработаны содары (работают на акустических волнах), лидары (используют оптическое излучение), радиолокаторы — радары (радиоволны) и профайдеры (радиоакустическое и электромагнитное излучение).

Тропосфера:

Тропосфера – это первый, самый нижний слой атмосферы – «придонный», в котором обитает все живое на планете: человек, животные, растения. Тропосфера простирается на несколько километров: возле полюсов его высота не превышает 8-10 км, а в районе экватора достигает 18 км. Такая разность в высоте атмосферы обусловлено центробежной силой Земли и тем, что ширина планеты неодинакова в разных ее частях (Земля имеет эллиптическую форму). Еще один фактор, влияющий на величину слоя – сезон, т.е. температурный режим. В теплое время года воздушные массы поднимаются выше, в холодное – опускаются к поверхности планеты, тем самым увеличивая или уменьшая ширину тропосферы.

Свое название слой получил от древнегреческих слов τρόπος  – «поворот, изменение» и σφαῖρα – «шар». Первая часть слова полностью соответствует основным критериям тропосферы – подвижности, изменчивости, динамичности, формирующих все те явления, которые принято называть «климат» и «погода». Это:

– образование облаков;

– циркуляция жидкости;

– образование циклонов, антициклонов;

– генерация ветров.

Тропосфера – самый тяжелый слой, т.к. в нем содержится 80% массы атмосферы, 50% всех газов и практически вся влага, что позволяет обитателям тропосферы «дышать». Удерживает он и тепло, сохраняя поглощаемые Землей солнечные лучи, поэтому при удалении от ее поверхности понижаются и давление, и температура. Причем температура понижается на 0,5-0,7 градуса Цельсия каждые 100 метров. Также с набором высоты усиливается ветер: на каждый километр высоты его скорость растет на 2-3 км/с. Примечательно, что снижение температуры характерно только для нижнего слоя (тропосферы), во всех же иных она растет по мере приближения к верхним границам.

На нижней границе, возле литосферы, находится еще один барьер: приземной пограничный слой, самый важный для циркуляции всей атмосферы. Именно здесь происходит отдача тепловой энергии и излучения планетой, создаются перепады давления и ветряные потоки, позже разделяемые и направляемые неровностями поверхности (горами, скалами и т.д.).

Верхним пределом тропосферы является тропопауза – промежуточный барьер между тропосферой и следующим слоем атмосферы – стратосферой.

Нормальным давлением у нижней границы тропосферы принято считать показатель в 1000 миллибар, который максимально приближен к эталону – 1013 миллибар (одна «атмосфера»). У верхнего слоя давление составляет уже 200 мБар, а при удалении от уровня моря на 45 км падает до 1 мБара.

За тропосферой и тропопаузой следует следующий слой атмосферы – стратосфера. В тропопаузе прекращается снижение температуры воздуха с возрастанием высоты.

Стратосфера

Стратосфера является вторым по величине слоём атмосферы, а также вторым, ближайшим к Земной поверхности. По оценкам, он содержит около 15% от общей массы атмосферы Земли.

Толщина стратосферы составляет 35 км от тропопаузы, что означает, что она расположена между тропосферой и мезосферой. Термин «стратосфера» происходит от греческого strato (значит «слой») для обозначения того факта, что сама стратосфера подразделяется на другие более тонкие слои.

Слои стратосферы образуются из-за отсутствия климатических явлений, которые смешивают воздух. Таким образом, существует чёткое разделение между холодным и тяжёлым воздухом внизу и тёплым, лёгким воздухом сверху. Таким образом, с точки зрения температуры стратосфера работает точно противоположно тропосфере.

Поскольку эта зона более высокой вертикальной стабильности (без перемещений воздуха), пилоты самолётов, как правило, остаются в начале стратосферы, чтобы избежать турбулентности. Именно на этой высоте самолёты и воздушные шары достигают максимальной эффективности.

Некоторые самолёты, особенно реактивные, влетают в стратосферу, чтобы избежать воздухообмен.

Стратосфера также содержит хорошо известный озоновый слой, который поглощает большую часть ультрафиолетового излучения солнца. Без озонового слоя жизнь на Земле, какой мы её знаем, была бы невозможна.

Подобно тропосфере, стратосфера также имеет область, которая ограничивает её конец и показывает начало мезосферы, которая называется стратопауза.

Состав стратосферы

Большинство элементов, найденных на поверхности Земли и в тропосфере, не достигают стратосферы. Вместо этого они обычно:

  • разлагаются в тропосфере;
  • могут быть устранены солнечным светом;
  • могут переноситься на поверхность Земли через дождь или другие осадки.

Из-за инверсии в динамике температуры между тропосферой и стратосферой воздух практически не обменивается между двумя слоями, в результате чего испарения воды существуют в стратосфере только в незначительных количествах. По этой причине в этом слое чрезвычайно редко образование облаков.

Что касается газов, стратосфера образована преимущественно озоном, присутствующим в озоновом слое. Считается, что 90% всего озона в атмосфере находится в этой области. Кроме того, стратосфера содержит элементы, переносимые извержениями вулканов, такие, как оксиды азота, азотная кислота, галогены и т. д.

Температура стратосферы

Температура в стратосфере увеличивается с увеличением высоты, варьируя от -51 ° C в самой низкой точке (тропопауза) до -3 ° C в самой высокой точке (стратопауза).

Важность

С точки зрения геолога- планетолога , атмосфера формирует поверхность планеты. Ветер уносит пыль и другие частицы, которые при столкновении с землей разрушают рельеф и оставляют отложения ( эоловые процессы). Мороз и осадки , зависящие от состава атмосферы, также влияют на рельеф. Изменения климата могут повлиять на геологическую историю планеты. И наоборот, изучение поверхности Земли приводит к пониманию атмосферы и климата других планет.

Для метеоролога состав атмосферы Земли является фактором, влияющим на климат и его вариации.

Для биолога или палеонтолога состав атмосферы Земли во многом зависит от появления жизни и ее эволюции .

Линия Кармана

Высота над уровнем моря, условно принятая как переход атмосферы планеты Земля в космос, называется линией Кармана. Находится она на уровне ста километров и является верхней границей любого государства.

Теодор фон Карман первым нашел, что воздух на этой высоте становится разряженным настолько, что авиация невозможна. Скорость, нужная для того, чтобы поднять летательный аппарат превосходит первую космическую, поэтому приходится использовать космонавтику.

Определение дано Международной федерацией космонавтики.Атмосфера проходит и выше линии Кармана.

Первый раз искусственный объект, который пересек линию Кармана в 1944 году прошлого века – это баллистическая ракета. Она долетела до высоты 188 км.

Из живых существ выше линии побывали дрозофилы. Их отправили США в 1947 г. Из млекопитающих честь преодолеть высоту досталась макаке Альберту-2 в 1949 г. Но преодолеть линию и прилететь обратно удалось собакам, которых запустил Советский Союз в 1951 г. Цыган и Дезик.Если искусственный аппарат добрался до этой линии, то полет считается космическим.

View and weather before the rain.

На высоте сто километров звук не распространяется и законы аэродинамики не работают. Тепло невозможно передать никаким иным способом. Только тепловое излучение. Конвекция или перемешивание воздуха не происходит, в отличие от нижних слоев атмосферы.

Основные виды ветров:

А на море белый песок

Дует тёплый ветер в лицо

Пассаты это очень мощные ветра, они устойчивы и оказывают влияние на климат.

Примеры влияние пассатов на климат:

  • В северном полушарии пассаты на север Африки несут сухие и нагретые воздушные массы с территории Аравийского полуострова. Следовательно на севере Африки тоже будет сухой и горячий климат (пустыня Сахара).

  • В южном полушарии, на восточное побережье Африки пассат приходит с Индийского океана. Воздух насыщен водяными парами, поэтому формируется жаркий и влажный климат.

Зимой муссоны дуют с материка на океан (зимой воздух над сушей холоднее, над океаном теплее). Летом с океана на материк

По климатической карте мы можем проследить действие муссонов.

В северном полушарии летний муссон несет морские воздушные массы с экватора на полуостров Индостан, встречая на своем пути Гималаи, влажный воздух оставляет всю влагу на восточных склонах гор. Таким образом над полуотсровом Индостан в летнее время очень большое количество осадков.

Геосферы Земли

Состав и свойства основных геосфер

Начиная от центра Земли, существуют следующие внутренние оболочки:

  1. Ядро. Занимает порядка 30% от общего объема планеты, влияет на магнитное поле Земли. Состоит из твердой и жидкой частей.
  2. Мантия. Практически самая объемная оболочка, составляющая более 80% Земли и более 60% от всей массы. Верхняя часть мантии (800-900 км) менее плотная и представляет собой магму, которая периодически выплескивается на поверхность планеты
  3. Земная кора. Тонкая оболочка (от 2 до 40 км), находящаяся на поверхности мантии. По плотности превосходит верхние слои мантии. Образуется базальтами и гранитами.
  4. Литосфера. Так принято называть совокупность земной коры и верхнего слоя мантии (астеносферы), а так же почву, образующуюся на поверхности земной коры. В литосфере выделяют особые движущиеся блоки — литосферные плиты.
  5. Гидросфера. Водная оболочка Земли, включающая в себя не только воду в жидком состоянии, но и в кристаллическом (ледовый покров Земли), а также в газообразном. Между компонентами гидросферы постоянно происходит взаимодействие за счет перехода воды в разные состояния. Большую часть гидросферы составляет мировой океан — более 70% оболочки. Его глубина в среднем составляет 4 км.
  6. Атмосфера. Газовая оболочка планеты. Отделяет литосферу и гидросферу от космического пространства. Атмосферу разделяют на несколько слоев: тропосфера, стратосфера, мезосфера, термосфера и экзосфера. При этом 80% воздуха, который необходим для жизни, содержится в тропосфере. Здесь же происходят такие погодные явления, как облака, конвекция, циклоны и антициклоны. Границы тропосферы неоднородны: 8-10 км в полярных областях и 16-18 км в тропиках.
  7. Биосфера. Состоит из всех живые организмы планеты и располагается на верхних слоях литосферы, в гидросфере, в нижнем слое тропосферы. Оболочка постоянно преображается организмами и включает в себя, в том числе, продукты их жизнедеятельности, которые могут переходить в состав других оболочек (например, каменный уголь).
  8. Ионосфера. Часть атмосферы, облученной солнцем, начинающейся примерно на уровне от 60 км до 100 км. Состоит из ионов газов (в основном азота и кислорода) и квазинейтральной плазмы. Заряженные частицы ионосферы важны для прохождения радиоволн.
  9. Магнитосфера. Внешняя оболочка Земли, которая представляет собой магнитное поле, взаимодействующее с магнитными волнами, исходящими от космических объектов: солнца, метеоров и т.д.

Вторичные геосферы

Дополнительные или вторичные геосферы связаны с деятельностью людей.

Определение

Антропосфера — геосфера, связанная с хозяйственной деятельностью человечества. Она формируется благодаря влиянию человека на другие географические оболочки.

Ноосфера. Впервые определение этой сферы было дано Вернадским В. И. в 1944 году. Буквально — сфера разума. По мысли ученого, ноосфера — это следующая стадия развития эволюции биосферы, в которой главную роль будет играть воля человека.

Социосфера включает общественные формы и структуры: семья, общество, церковь, государство, нация и другие, а также отношения между этими структурами — всемирные организации, войны, миграция и т.д.

Хроника катастрофических бурь, смерчей и ураганов

Катастрофические бури, смерчи, ураганы, тайфуны…

  • 1359 г. Одна из самых убийственных бурь с градом произошла во Франции,
    близ города Шартр во время столетней войны.
    Говоря о человеческих жертвах, летописец сообщает лишь о солдатах армии английского короля Эдуарда III —
    тысяча из них была убита градинами величиной с гусиное яйцо . Кроме того погибло 6 тыс. лошадей войска.
  • 1471 г. Удар особо жестокой бури по г. Новгороду .
    Погибло свыше 900 человек и огромное количество скота. Затонуло 180 новгородских судов.
  • 1629 г. Невиданный ураган в Москве .
    По свидетельству летописца, дело не ограничилось тем, что с домов были сорваны крыши, а со многих церквей — купола.
    Ураган разрушил ряд домов полностью, а некоторые церкви, по утверждению летописца, перенес на новые места.
  • 1703 г. 27 ноября на Англию обрушился ураган, сопровождающийся нагонной волной.
    В море погибло 300 судов и 30 тыс. членов их экипажа. Также было разрушено 5 тыс. домов.
  • 1737 г. 7 октября тропический ураган в Бенгальском заливе вызвал гигантскую нагонную волну,
    затопившую прибрежные районы находившиеся в его акватории стран. Кроме того, затонуло 20 тыс. судов.
    Количество погибших составило 300 тыс. человек .
  • 1775 г. У о. Ньюфаундленд сотни рыболовных судов потоплены ураганом. Погибли не менее 4 тыс. человек.
  • 1777 г. 21 сентября произошли буря и наводнение в Санкт-Петербурге.
    Причинены значительные разрушения.
  • 1789 г. Три нагонные волны, вызванные ураганом, полностью разрушили индийский г.Коринга в дельте р.Ганг
    и уничтожили 20 тыс. человек.
  • 1811 г. 10 сентября в штате Южная Каролина (США) по г. Чарлстон прошел смерч,
    вызвавший огромные разрушения и убывший около 500 человек.
  • 19 августа 1812 г. по штату Луизиана (США) прошел ураган.
    На реке Миссисипи он буквально разнес на куски 50 кораблей.
    Были разрушены многие населенные пункты. Погибло несколько сотен человек.
  • В сентябре (1815) мощный ураган обрушился на Северо — Восточное побережье США. Затонуло 85 судов.
    В ряде мест волны затопили прибрежные районы, залив даже места расположенные в 60 км. от моря.
  • 1819 г. 27 июля ураган разрушил город Мобил в США (штат Алабама). Погибло более 200 человек.
    Кроме того, в море затонули или были разбиты волнами о берег сотни судов.
  • 1824 г. Наводнение в Санкт-Петербурге — 6 ноября в Балтийском море образовалась нагонная волна,
    которая заставила Неву потечь вспять и выйти из берегов.
    Затоплен был весь город, вода снесла с лица земли целые кварталы.
    По официальным данным погибло 208 человек.
  • 1825 г. 26 июля ураган разрушил 70 тыс. домов на острове Пуэрто — Рико. Погибло 374 человека.
  • 1829 г. Ураган и наводнение в районе Инвернесс в Шотландии. Погибли сотни людей.
  • 1831 г. 10 августа ураган разрушил до основания все населенные пункты на острове Барбадос. Погибло 15 тыс. человек.
    В том же году холера начала свой марш по странам Европы.
    В некоторых странах, включая Россию, она стала почти повседневной болезнью.

Что касается северо-запада России, то ураганы тудк налетали примерно через полтораста лет.

Второй слой атмосферы – стратосфера

Над тропосферой и под мезосферой находится стратосфера. Протяжность слоя от 8 до 55 километров над поверхностью планеты. Состав стратосферы примерно как в тропосфере. Содержание озонового слоя повышено, а концентрация водяного пара уменьшена. Чем выше, тем температура повышается, причем влияет на это солнечное излучение, а не движение воздушных масс.

Движения воздушных масс здесь происходят параллельно. Стратосфера останавливает ультрафиолетовое излучение и трансформирует короткие волны. Лучи влияют на ионизацию, распад молекул и изменения магнитных полей. Поэтому наблюдаются такие явления, как зарницы, северное сияние или перламутровые облака.

Самолеты, воздушные шары летают в стратосфере.

В стратосфере находится озоновый слой, определяющий предел жизни в биосфере. Ультрафиолетовое излучение поглощает озон, и воздух нагревается. Озон разрушается при контакте со свободными радикалами, фреонами, оксидом азота. А образуется посредством химической реакции. Озон играет огромную роль на влияние жизни. В 85 году прошлого века обнаружили дыру в озоновом слое над Антарктидой и Арктикой, что влияет на климат. Потепление и похолодание – вот последствия разрастания озоновых дыр.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector